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An efficient and simple synthesis of pentacyclic quinolonoquinoxalinooxazocines in a one-pot sequence
has been performed by unique application of phase transfer catalysis. Preparative simplicity and concep-
tual novelty of the methodology offer an attractive general application for the synthesis of novel quino-
line antibiotics.
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1. Introduction

Heterocyclic rings are present as fundamental components in
the skeletons of more than half of the biologically active com-
pounds produced by nature.1 Investigations toward understanding
the reactivity of such compounds are therefore gaining significance
and expedient syntheses particularly for N-heteroaromatics are
much sought after. Among the various heterocyclic skeletal forms,
quinolones and quinoxalines are two privileged motifs that are
found in the core of several antibiotics presently used in clinical
practices such as ofloxacin,2 norfloxacin,3 and A-621764 on the
one hand, and echinomycin, leromycin, and actinomycin5 on the
other hand.

The quinolone drugs are potent inhibitors of lymphocyte apop-
tosis6 and often form the framework of DNA intercalating agents,7

whereas the quinoxaline drugs are known to inhibit the growth of
gram-positive bacteria and are also active against various trans-
plantable tumors.5 The intercalative binding of these drugs is due
to the presence of planar linearly fused tri cyclic system.8 More-
over, tetra, penta, and hexa cyclic compounds containing one or
two heteroatoms fused to quinoline ring in a linear fashion are
found in natural products as well as in synthetic compounds of bio-
logical interest that have antitumor and anticancer properties.9

Based on these information we contemplated that convergent syn-
theses of quinolone–quinoxaline hybrid moieties that would yield
a fused pentacyclic ring system having two or more heteroatoms
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might lead to products of enhanced biological efficacy. We also
wanted to develop a new methodology that will increase the struc-
tural complexity of the molecules while decreasing the number of
synthetic steps, and afford high yields coupled with low cost and
operational simplicity under environment-friendly mild reaction
conditions. In this aspect phase transfer catalysis has long been
recognized as a versatile methodology for organic synthesis in
industry, academia and in process chemistry.10 As a part of our
ongoing endeavor on phase transfer catalysis for the construction
of structurally unique N-heteroaromatics,11 herein we report the
use of this methodology for the synthesis of extended and also ex-
panded polycyclic novel heteroaromatics containing both quino-
lone and quinoxaline moieties in annelated form.

Our route to the targeted pentacyclic quinolonoquinoxalino-
oxazocines began with the reaction of 8-hydroxyquinoline (3a)
and 2,3-bis-(bromomethyl)-6,7-dimethylquinoxaline (2a), the
alkylating agent effortlessly prepared (Scheme 1) from 1,4-dibro-
mo-2,3-butanedione and phenylenediamine (1a). The reaction
partners 3a and 2a in 1:3 mole ratio were taken in minimum
amount of dichloromethane and then treated at room temperature
with catalytic amount of tetrabutylammonium bromide (phase
transfer catalyst) in the presence of 10% sodium hydroxide solution
for several hours.12 The progress of the reaction was monitored by
tlc, which showed that the reaction was complete within 12 hours.
Usual work-up followed by chromatographic separation afforded
the quinolone (5a) with high yield (90%). As we were interested
to isolate the putative intermediate quinolinium, the same reaction
was performed for a shorter duration to obtain the intermediate
quinolinium (4a) along with 5a after chromatographic separation.



Table 1
Construction of fused pentacyclic quinoliniums and quinolones using 8-hydroxyquinolines (3a–d) and 2,3-bis-bromomethyl quinoxaline derivatives (2a–b)a

8 HQ (3a–d) Alkylating agents (2a–b) Time (h) Productb (%)c

Quinoliniumd Quinolone

3a 2a 4
N
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N

N
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N

O

N

N
O
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3a 2a 8 4a (50) 5a (45)
3a 2a 10 4a (25) 5a (70)
3a 2a 12 4a (NI) 5a (95)
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Scheme 1.
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Table 1 (continued)

8 HQ (3a–d) Alkylating agents (2a–b) Time (h) Productb (%)c

Quinoliniumd Quinolone

3d 2a 16 4d (NI) 5d (80)

3a 2b 10 4e (NI)
N

O

N

N
O

5e (90) 

3b 2b 12 4f (NI)
N

O

N

N
O

Cl

5f (95) 

3c 2b 10 4g (NI)

N

O

N

N
O

Br

Br
5g (88) 

3d 2b 10 4h (NI)

N

O

N

N
O

Cl

I
 5h (92)

NI = not isolated.
a All the reactions were conducted with 8-hydroxyquinoline and bis-bromomethyl quinoxaline derivatives under PTC condition.
b All the products are characterized by mass, 1H, 13C NMR.
c Isolated yield.
d After 4 h unreacted substrates were recovered.
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Almost equivalent amounts of the quinoliniums and quinolones
could be isolated after 8 h of the reaction; however, with increased
time period, the yield of the isolated quinolinium decreased with
gradual increase in quinolone formation (Table 1). It is worthy of
mention that on termination of the reaction after 4 h only the quin-
olinium (30%) was isolated. After optimization of the reaction
parameters for the generation of 5a, the scope of this chemistry
was then extended to differently substituted 8-hydroxyquino-
lines, viz. 5-chloro- (3b), 5,7-dibromo-(3c) and 5-chloro-7-iodo-
(3d), and 2,3-bis-(bromomethyl)-quinoxaline derivatives 2a,b.
The results summarized in Table 1 reveal that the quinolones
can be prepared in high yields in all the cases. It is presumed that
the pathway for the formation of the quinolones proceeds
through the intermediate quinolinium, formed from 8-hydroxy-
quinoline by intramolecular O-N-dialkylation. The conversion of
the quinoliniums to quinolones might have been initiated by
nucleophilic attack of hydroxide ion onto the electrophilic C-2
carbon of the quinolinium salts forming the intermediates I
(Scheme 2), which then transformed to quinolones via oxidative
pathway as described earlier.11 The mass and 13C NMR spectral
data of all these quinoliniums and quinolones are well in agree-
ment with the proposed structures but some ambiguity was ob-
served in the 1H NMR spectra of the quinoliniums.13 The
protons of the CH2 groups in 5a–h are nonequivalent and reso-
nate in different aliphatic regions as doublets. Though three pro-
tons of two CH2 groups in 4a–d gave rise to separate doublets in
aliphatic region, one of the two protons of the N–CH2 resonates in
the aromatic region (7.7–7.8 ppm). The downfield shift to the aro-
matic region is probably due to the near parallel orientation of
the C–H bond with the p-orbitals of the aromatic ring(s), allowing
greater overlap. There are reports that in the cases of quinolinium
or isoquinolinium benzyl bromides the protons of the –CH2 group
usually resonate as a singlet at d 6.05–6.70.14 Single crystal X-ray
analyses of quinolinium 4d and quinolone 5f unambiguously
established the proposed structures (Fig. 1).

2. Conclusion

In summary, we have developed a new strategy for the con-
struction of structurally novel polycyclic N-heteroaromatics having
quinoxaline and quinolone moieties in one-pot sequence and dem-
onstrated a unique application of phase transfer catalysis. The pro-
cedure offers a broad synthetic feasibility of synthesizing newer
heteroaromatic systems having potential biological activity.
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Figure 1. ORTEP representations of compounds 4d (cationic part with solvent MeOH, left) and 5f (right), the displacement ellipsoids are drawn at a probability of 50%.
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